
Modeling evaporation of sessile drops with moving contact lines

N. Murisic and L. Kondic
Department of Mathematical Sciences, Center for Applied Mathematics and Statistics,

New Jersey Institute of Technology, Newark, New Jersey 07102, USA
�Received 23 October 2008; published 31 December 2008�

We consider evaporation of pure liquid drops on a thermally conductive substrate. Two commonly used
evaporative models are considered: one that concentrates on the liquid phase in determining the evaporative
flux and the other one that centers on the gas-vapor phase. A single governing equation for the evolution of
drop thickness, including both models, is developed. We show how the derived governing equation can be used
to predict which evaporation model is appropriate for different considered experimental conditions.
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Evaporating thin films and drops are present in numerous
natural situations and applications of technical importance.
Coated liquid films, for example, are often left to dry by
evaporation. Residual films whose thickness may vary from
millimetric in the case of paints to nanometric for photoresist
films in semiconductor applications are often desired in a
uniform state. However, various kinds of instabilities, many
driven by evaporation-related mechanisms, often occur.
Evaporative sessile drops are perhaps even more interesting
since nonuniform drop thickness and the presence of contact
lines �separating liquid, gas, and solid phases� lead to addi-
tional effects, such as a possibility of nonuniform evapora-
tion along the liquid-gas interface, temperature gradients,
and related Marangoni effects. These effects are crucial in
various problems, such as the so-called coffee-stain phenom-
enon involving the deposition of solid particles dissolved in
the liquid close to a contact line �1� and its numerous appli-
cations, such as analysis of DNA microarrays �2�.

Despite its apparent simplicity, the problem of an evapo-
rating drop on a thermally conducting solid substrate in-
volves a number of physical processes, including mass and
energy transfer between the three phases, diffusion, and/or
convection of vapor in the gas phase, coupled with complex
physics in the vicinity of a contact line. So-called “2-sided”
models include processes in both the liquid and gas phases,
but lead to a mathematical formulation of significant com-
plexity, even when solid-phase and contact-line issues are
not considered �3�. As we discuss below, various simplifica-
tions are based on estimating the importance of the relevant
physical processes and lead eventually to models which con-
centrate only on one of the phases �gas or liquid�. The esti-
mates, however, involve quantities which are often not pre-
cisely known. In this paper, we demonstrate that various
assumptions, commonly used in the literature, lead to models
which can produce qualitatively different results. The differ-
ence in the theoretical results suggests experimental mea-
surements which can be used to decide on which model is
appropriate for a particular physical problem. This will allow
for a direct comparison between these models including tem-
perature profiles at the evaporating interface.

The complete 2-sided model can be simplified by realiz-
ing that thermal conductivity and viscosity of vapor are small
compared to the liquid ones. In addition, assuming that the
gas phase is convection free, one reduces the 2-sided model
to the so-called “1.5-sided” model, which includes the pro-

cesses in the liquid and the diffusion of vapor in the sur-
rounding gas �4�. An estimate of a typical diffusion time
scale, td= l2 /D, involves the relevant thickness of the gas
phase, l, and the diffusion constant for, e.g., water vapor D
�10−5 m2 /s. Assuming for a moment that l is on a millime-
ter scale �comparable to a typical thickness of a drop� leads
to td�10−2 s. The argument that td is much shorter than a
typical time scale involved in drop evolution has been used
to reduce the diffusion equation for vapor concentration c to
the Laplace equation �5�. Furthermore, assuming that the
evaporation process itself is extremely fast �6� allows one to
completely ignore the processes in the liquid for the purpose
of finding the mass flux. Therefore, the problem is simplified
to �2c=0 in the gas-vapor domain. Concentrating now on
the part of the domain close to the contact line, one realizes
an analogy to finding an electric field �mass flux J� in the
vicinity of a “lens”-shaped conductor �the drop�, where c
plays the role of electrostatic potential �1�. Typically this lens
model assumes a pinned �stationary� contact line. It is un-
clear a priori how crucial this assumption is, since the con-
tact line, even if mobile, evolves slowly �7�. An extensive
modeling using the lens-type model has been carried out,
implementing both finite-element and lubrication-type ap-
proaches �5,8�. Various versions of this model have been
used to predict evaporative behavior of �nonpinning� alkane
�9� and colloidal drops �10,11� and to study the temperature
profiles along the liquid-gas interface �12�, among others.

Focusing on the liquid phase, one realizes that the evapo-
ration is limited by two physical processes: heat diffusion
through the liquid supplying heat to the interface and evapo-
ration itself �convective contribution to heat transfer can be
shown not to be important following the arguments as dis-
cussed in, e.g., �13��. In a simple model �3�, the first two
processes can be related via Biot number, Bi=KpTLd0 /k,
where K=� /�2�RgTsat and pT=Lpsat / �RgTsat

2 �. Here, psat is
the saturation pressure, Rg is the universal gas constant di-
vided by the molar mass, L is the latent heat of vaporization,
d0 is the drop thickness, k is the liquid heat conductivity, Ti
and Tsat are the interface and saturation temperatures, and �
is the accommodation coefficient, describing the probability
of phase change. The limit Bi→0 implies that the tempera-
ture of the liquid-gas interface tends to the temperature of the
solid, evaporation itself proceeds in a reaction-limited re-
gime, and the interface is in a state of nonequilibrium �3�.
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Bi→�, on the other hand, indicates that the evaporation is
much faster than the heat diffusion through the liquid and
that evaporation proceeds in the liquid heat diffusion-limited
regime, with the interface being in equilibrium.

While most of the quantities entering the definition of
Bi are well known, the value of � is questionable. A variety
of �’s in the range O�1�–O�10−6� have been used in the
literature, often without much justification. Using ��10−4

�a value to be discussed shortly� yields Bi�10−2, suggesting
that the evaporation may proceed in the reaction-limited
regime �however, see below for further discussion of this
issue�. Further insight can be reached by considering Bi
as the ratio of the relevant time scale involved in the liquid
heat diffusion, tl, and the one involved in the evaporative
process itself, te. Using tl=d0

2 /�, where � is the thermal dif-
fusivity of liquid and d0=0.5 mm, one finds tl�1 s and
te�102 s. We note that a similar value is obtained by using
te= �d0

2�L� / �k�T�, where �T is the appropriate temperature
scale �14�. Since te� tl, one may consider a model where the
relevant limiting mechanism is the evaporative process itself,
and not heat conduction in the liquid; in addition, since te
� td, this estimate suggests that diffusion of vapor in the gas
may be ignored. This “nonequilibrium one-sided” �NEOS�
model has been extensively used for evaporative thin films
�see �15� for a review�, but only few works have applied it to
the evaporating drop problem �11,14,16,17�. We note that the
argument outlined here for use of the NEOS model is based
on the assumption of relatively small relevant thickness l
governing the diffusion in the gas phase. Larger l would lead
to larger td, and thus it would be unclear which model is
more appropriate. It should be noted, however, that if td is
large, the assumption of steady-state formulation for the gas
concentration is questionable.

The mathematical model implemented here consists es-
sentially of the Navier-Stokes equations coupled with the
energy equations for the liquid and solid, and appropriately
chosen J, in the spirit of the models reviewed in �15�. The
boundary conditions are as follows: �i� Fixed temperature at
the bottom of the solid substrate; �ii� no slip, no penetration,
and continuity of temperature and heat flux across the liquid-
solid interface; and �iii� mass balance, energy balance, and
normal and shear stress balance at the liquid-gas interface.
For the case of spontaneously evaporating drops which we
consider, thermocapillary �Marangoni� effects are expected
to be significant �18�. These effects are modeled using a
simple linear dependence of surface tension on liquid tem-
perature: 	�T�=	0−
�T−T0�, where 	0 is the surface ten-
sion at room temperature, T0=298 K, and 
=−d	 /dT �

�0 for most liquids�. The solid-liquid interaction is modeled
using the disjoining pressure approach. A large body of
works in the literature �see, e.g., �19,20�� has discussed the
details of relevant microscopic physics. Here we choose a
simple model with both attractive and repulsive terms, which
are often assumed to result from van der Waals �vdW� inter-
molecular forces, leading to a stable equilibrium liquid layer
�precursor film�.

The equations and the boundary conditions are nondimen-
sionalized using the following scales: d0=0.5 mm �typical
drop thickness� is the length scale; d0

2 /�, � /d0, and ��2 /d0
2,

where � is kinematic viscosity and � is density of the liquid,

are viscous scales for time, velocity, and pressure, respec-
tively; the temperature difference T−Tsat is scaled against
�T=T0−Tsat; finally, the scale for mass flux is k�T / �d0L�.
We use a lubrication approximation, although for some con-
sidered problems, the contact angle is relatively large �

�40° �. This approach is supported by finite-element simu-
lations that show that even for large contact angles, the lu-
brication approach leads to reliable results �5�. In cylindrical
coordinates and assuming azimuthal symmetry, we obtain the
following fourth-order PDE for the film thickness h�r , t�:
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A similar formulation was used in a number of works; see
�15� for a review. We used a similar equation to study the
instabilities of evaporative isopropyl alcohol �IPA� drops
�14�. The main difference between the present case and �14�
�in addition to the geometry� is keeping the evaporative flux
J�h� explicitly in the formulation, so that Eq. �1� can be used
for both considered evaporative models. The terms of Eq. �1�
represent the effects due to viscosity, evaporation, capillarity,
vapor recoil, Marangoni stresses �two terms�, vdW forces,
and gravity, respectively. This equation contains the follow-
ing nondimensional quantities: E=k�T / ���L� is the evapo-
ration number; S=	0d0 / �3��2�, D=3Yv / �2��, where Yv is
the vapor mass content in the gas; Ma=
�Td0 / �2���� is the
thermocapillary Marangoni number; Pr=� /� is the Prandtl
number; W=kd / �ksd0�, where d is thickness and ks is the
thermal conductivity of the solid substrate, accounts for ther-
mal effects in the solid; A=�d0� / �3�2Nb� is the nondimen-
sional Hamaker constant, where � is viscosity of the liquid;
�=	0�1−cos 
� and N= �n−m� / ��n−1��m−1��, where we
use �n ,m�= �3,2�; b=dprec /d0, dprec is the precursor film
thickness; and G=−d0

3�2g / �3�2�, where g is gravitational ac-
celeration. Table I lists values of the most important material
parameters for IPA and dionized water �DIW�.

TABLE I. Table of parameter values for IPA and DIW �21�.

Parameter IPA DIW

Rg �J/kg K� 138.35 461.92

L �J/kg� 0.79�106 2.44�106

Tsat �K� 256.1 286.8

k �W/K m� 1.35�10−1 6.05�10−1

� �kg /m3� 790 998

Yv �kg /m3� 7.549�10−3 1.196�10−2


 �N/K m� 0.25�10−3 0.18�10−3

	0 �N/m� 2.1�10−2 7.2�10−2

� �kg/ms� 2.04�10−3 0.9�10−3
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Next, we concentrate on the key point: the evaporative
flux J. The functional form of J was discussed in more detail
elsewhere �22,23�; here, we provide a brief overview. For the
lens model, an analogy to the equivalent electrostatics prob-
lem yields the following expression for J�h�:

J�h� =
�

h� , �2�

where the exponent � can be approximated by �=0.5
−
 /� �5�. For the NEOS model, based on the kinetic theory
of gases, we obtain

J�h� =
1

h + W + K
, �3�

where K=Bi−1 �3,14�. For the case of DIW, K is typically
large, as discussed before, and therefore J�h� only weakly
depends on h. The volatility parameters � and � are esti-
mated based on our preliminary experiments, which we re-
port in detail elsewhere �23,24�. We note that for the present
purpose of comparing the main features of the results, pre-
cise values of these quantities are not crucial. Direct com-
parison of model predictions to an experiment would require
a more precise approach. We use �i� ��5�10−2 for DIW
and ��5�10−3 for IPA, consistent with experimentally
measured volatility from �9�; ��3�10−4 for DIW, consis-
tent with the experimental results for drops exposed to open
atmosphere �25,26�, and based on the same sources, we es-
timate ��10−3 for IPA.

Another important parameter is the precursor film thick-
ness b. Although it is typically sufficient to use b�1, here
we require that the evolution of radius and volume of an
evaporating drop not depend on b in any significant manner
and find that for d0b�0.625 �m this requirement is satis-
fied. Coincidentally or not, this value is consistent with the
equilibrium adsorbed film thickness d0be�0.5 �m for which
evaporation stops due to attracting solid-liquid forces �16�.

In this work, we concentrate on Si substrates, which are
assumed to be sufficiently smooth, so that no pinning of the
contact line occurs, in contrast to other works where pinning
is known to take place; see, e.g., �1,5,8�. In addition, we
assume that the contact angle 
 does not vary substantially;
this assumption is supported by recent experimental data
�17�. The numerical simulation of Eq. �1� is carried out using
a second-order accurate implicit scheme which is an exten-
sion of the one used in �14� to cylindrical geometry. All
simulations use as an initial condition the steady-state solu-
tion of Eq. �1� obtained by removing the evaporative terms.

Figure 1 compares the predictions of lens and NEOS
models for the case of DIW drops. Figure 1�a� shows the
evolution of the drop radius, R�t�. While the general trend of
the results is the same, the speed of the contact line is much
larger for the lens model. An explanation for this difference
is provided in Fig. 1�b�, which shows that the two models
lead to qualitatively different temperature profiles along the
liquid-gas interface. The resulting Marangoni flow is oppo-
sitely directed for the two models. In particular, for the lens
model, this flow is from the center of the drop toward the
contact line, and it may therefore enhance mass loss and
cause more pronounced receding motion of the contact line,
as shown in Fig. 1�a�. An increase of the temperature as one
moves from the center in the NEOS model is a consequence
of the fact that the heat supplied from the solid is larger than
the heat lost due to evaporation. The lens model, on the other
hand, predicts significantly larger evaporative flux in the
contact line region, therefore leading to a sharp decrease of
temperature there. The temperature increase as one moves
away from the center is consistent with previous results
which consider solids of similar thermal properties �12,13� or
slightly heated solids �18�, obtained using a lens-related
model, and similar values of 
 and liquid thermal conduc-
tivity, although under the assumption of a pinned contact
line. Preliminary experimental results of slightly heated
droplets using IR imaging �18� also show an increase of tem-
perature as one moves from the center, at least within the
experimental accuracy. We also note that the temperature
profile in Fig. 1�b�, corresponding to the NEOS model,
agrees well with previous numerical results using a similar
approach �17�. Our results for the lens model predict a “stag-
nation point,” where the temperature gradient changes sign.
A similar temperature maximum has been proposed as an
explanation for stagnation points recorded in recent experi-
ments �27�. We note that a nonmonotonous temperature pro-
file is not required to describe the experimental results in
�27�: the presence of a stagnation point, based on completely
different physical grounds, was extensively discussed as one
of the necessary ingredients for the formation of ringlike
deposits occurring during evaporation of colloidal drops
�10,28�. Finally, we note that our simulations assuming the
lens model for smaller values of 
 leads to monotonically
decreasing temperatures along the liquid-gas interface as one
moves away from the drop center, in full agreement with
earlier results �12,13�.

Next, we apply these two models to a more volatile IPA
drop. Figure 2 shows the resulting evolution of the drop ra-
dius, R�t� ��a�� and the temperature along the liquid-gas in-
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FIG. 1. �Color online� DIW
drop: �a� radius R�t� predicted by
the two models; �b� temperature
of the liquid-gas interface at the
end of the time interval shown in
�a�.

MODELING EVAPORATION OF SESSILE DROPS WITH… PHYSICAL REVIEW E 78, 065301�R� �2008�

RAPID COMMUNICATIONS

065301-3



terface ��b��. First, we notice the dramatically different evo-
lution of R�t� for the two models. Considering the
temperature profiles in Fig. 2�b� provides immediate under-
standing of this difference. The Marangoni forces act in op-
posing directions, leading to a very different evolution. For
example, for the lens model, the Marangoni forces act out-
ward, leading to an initial increase of the drop radius �shown
in Fig. 2�a�� despite the loss of mass due to evaporation.
Preliminary comparison with experiments �discussed in de-
tail in �24�� shows drop evolution which is consistent with
the predictions of the lens model �solid line in Fig. 2�a��.
This outcome is perhaps not surprising: increased volatility
of IPA compared to the DIW case results in larger vapor
production; in addition, the Biot number for IPA is an order
of magnitude larger than the one for DIW. The combination
of these factors may lead to evaporation which proceeds in
the �vapor� diffusion-limited regime. Our hypothesis is fur-

ther supported by recently confirmed agreement between
predictions of the lens model and the experimental data for
water-methanol mixtures with volatility characteristics com-
parable to IPA �29�.

In this work we have shown that two commonly used
evaporative models may lead to contradictory results for dy-
namics and in particular temperature profiles of evaporating
drops. Future work will discuss in more detail the application
of these models to a particular experimental setup. We hope
that the results presented here will encourage more elaborate
experiments, possibly involving direct measurement of the
interfacial liquid-gas temperature, an ultimate test for any
evaporation model.

We thank Pierre Colinet, Javier Diez, Yehiel Gotkis, Alex
Oron, Bill Ristenpart, and Howard Stone for useful
discussions.
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FIG. 2. �Color online� IPA
drop: �a� radius R�t� as a result of
the two models and �b� tempera-
ture profiles of the liquid-gas in-
terface at the final time shown in
�a�.
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